Document Nodes have primary inputs and secondary inputs
Proto Nodes have only a single primary input, and all secondary inputs are fields of the struct
upon which the node implements

Currently caching uses CacheNodes that are manually included in the definition of certain
specific nodes, like CreateCanvas that lets us reuse (cache) the canvas DOM element. In the
future, during a graph rewriting step (specifically where is TBD), we can make it insert more
CacheNodes.

Levels of abstraction

Explicit composition (input resolution step):

Happens at execution time, serves as the actual sequence of Rust functions that get called.
The Rust call stack gets built from the network output, traversing backwards up the graph flow,
building a footprint.

Here, the compose nodes account for most of the nodes being called, as they delegate to the
lambdas that form their wrapped operation.

The compiler automatically inserts the ComposeNodes (where no manual composition is
enabled).

Type inference -> Type checking and mapping from stable node id to type
Proto graph with stable node IDs:

Topologically sorted proto graph:

“Input resolution” Proto graph with explicit composition
https://youtu.be/Q5yibBN3U1k?t=3341

e A single eval()-able ‘Box<dyn Node>" (a struct that implements the Node trait)
This node can be called with .eval() with editor_api as its input, and it wraps the entire
program internally.

1

Linking step: based on the generics, we look up the implementation from the node
registry that fits the type signature for each node. If the node registry doesn’t contain it
(the T -> T identity node might not have something arbitrary like (f32, f32, f32) -> (f32,
32, f32) for example), then we need to fetch it from the compilation server. Also we
instantiate the node implementations with their arguments. We have the borrow tree in
this step, which holds all the allocated and constructed nodes (from looking it up in the
node registry and then storing it in the borrow tree), because we need to reference it
where it can be stored. We need to link different nodes into a final complex form. We


https://youtu.be/Q5yibBN3U1k?t=3341

need to allocate the nodes that live somewhere, this lets us store them persistently as
the borrow tree is the owner of the data.

1

Typed “simple” proto graph

While we haven’'t modified the “simple” proto graph from the previous step, we now also
have a separate data structure called TypingContext that can be used in conjunction with
the proto graph to look up the type information.

1

Type inference (we start from the leaves of the graph, and look up what the type for each
of the leaves is, and traverse upwards and always determine the type of the next node
based on its inputs— does type checking and substitutes type arguments, where they
exist, with concrete types. The result is that we've assigned concrete types to all nodes.)

1

“Simple” proto graph without primary inputs (compose nodes substituted for
primary inputs)

Still a valid proto graph, but now an even simpler grammar could be used to describe
this form of proto graph.

1

Input resolution (the inputs are turned into compose nodes, this is where the compose
node insertion happens)

1

“Complex” proto graph with primary inputs:
Consists only of proto nodes, but they have primary inputs (represented as
‘CallArg::Node(Nodeld)’) and no compose nodes yet.

1

Document graph -> proto graph conversion
+ Split document network with multiple outputs into one proto network per output

1

Flattened document graph
We substitute nested document node implementations with their contents, so all nodes
are document nodes that have an implementation that is a proto node.

1

Document graph flattening

1

Nested document graph without Extract node implementations



We substitute Extract node placeholder implementations with a ValueNode that
produces a DocumentNode (graph source code representation usable at
runtime/render-time). Also this step would do Inject in the future.

1

Extract node resolution

1

Nested document graph
This is what the user sees in the Ul



